Characterizing and approximating eigenvalue sets of symmetric interval matrices
نویسندگان
چکیده
منابع مشابه
Characterizing and approximating eigenvalue sets of symmetric interval matrices
We consider the eigenvalue problem for the case where the input matrix is symmetric and its entries perturb in some given intervals. We present a characterization of some of the exact boundary points, which allows us to introduce an inner approximation algorithm, that in many case estimates exact bounds. To our knowledge, this is the first algorithm that is able to guarantee exactness. We illus...
متن کاملApproximating Sets of Symmetric and Positive-Definite Matrices by Geodesics
We formulate a generalized version of the classical linear regression problem on Riemannian manifolds and derive the counterpart to the normal equations for the manifold of symmetric and positive definite matrices, equipped with the only metric that is invariant under the natural action of the general linear group.
متن کاملAnalysis of Eigenvalue Bounds for Real Symmetric Interval Matrices
In this paper, we present several verifiable conditions for eigenvalue intervals of real symmetric interval matrices overlapping or not overlapping. To above cases, two new methods with algorithms for computing eigenvalue bounds of real symmetric matrices are developed. We can estimate eigenvalue bounds moving away the assumption that two intervals containing two eigenvalues of real symmetric i...
متن کاملApproximating the largest eigenvalue of network adjacency matrices.
The largest eigenvalue of the adjacency matrix of a network plays an important role in several network processes (e.g., synchronization of oscillators, percolation on directed networks, and linear stability of equilibria of network coupled systems). In this paper we develop approximations to the largest eigenvalue of adjacency matrices and discuss the relationships between these approximations....
متن کاملEigenvalues of symmetric tridiagonal interval matrices revisited
In this short note, we present a novel method for computing exact lower and upper bounds of a symmetric tridiagonal interval matrix. Compared to the known methods, our approach is fast, simple to present and to implement, and avoids any assumptions Our construction explicitly yields those matrices for which particular lower and upper bounds are attained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2011
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2011.08.028